Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Small ; : e2401264, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634249

RESUMEN

Biological photo-responsive ion channels play important roles in the important metabolic processes of living beings. To mimic the unique functions of biological prototypes, the transition metal dichalcogenides, owing to their excellent mechanical, electrical, and optical properties, are already used for artificial intelligent channel constructions. However, there remain challenges to building artificial bio-semiconductor nanochannels with finely tuned band gaps for accurately simulating or regulating ion transport. Here, two well-designed peptides are employed for the WS2 nanosheets functionalization with the sequences of PFPFPFPFC and DFDFDFDFC (PFC and DFC; P: proline, D: aspartate, and F: phenylalanine) through cysteine (Cys, C) linker, and an asymmetric peptide-WS2 membrane (AP-WS2M) could be obtained via self-assembly of peptide-WS2 nanosheets. The AP-WS2M could realize the photo-driven anti-gradient ion transport and vis-light enhanced osmotic energy conversion by well-designed working patterns. The photo-driven ion transport mechanism stems from a built-in photovoltaic motive force with the help of formed type II band alignment between the PFC-WS2 and DFC-WS2. As a result, the ions would be driven across the channels of the membrane for different applications. The proposed system provides an effective solution for building photo-driven biomimetic 2D bio-semiconductor ion channels, which could be extensively applied in the fields of drug delivery, desalination, and energy conversion.

2.
Adv Sci (Weinh) ; : e2309819, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582505

RESUMEN

Exsolution is an effective method for synthesizing robust nanostructured metal-based functional materials. However, no studies have investigated the exsolution of metal nanoparticles into metal nitride substrates. In this study, a versatile nitridation-driven exsolution method is developed for embedding catalytically active metal nanoparticles in conductive metal nitride substrates via the ammonolysis of multimetallic oxides. Using this approach, Ti1-xRuxO2 nanowires are phase-transformed into holey TiN nanotubes embedded with exsolved Ru nanoparticles. These Ru-exsolved holey TiN nanotubes exhibit outstanding electrocatalytic activity for the hydrogen evolution reaction with excellent durability, which is significantly higher than that of Ru-deposited TiN nanotubes. The enhanced stability of the Ru-exsolved TiN nanotubes can be attributed to the Ru nanoparticles embedded in the robust metal nitride matrix and the formation of interfacial Ti3+─N─Ru4+ bonds. Density functional theory calculations reveal that the exsolved Ru nanoparticles have a lower d-band center position and optimized hydrogen affinity than deposited Ru nanoparticles, indicating the superior electrocatalyst performance of the former. In situ Raman spectroscopic analysis reveals that the electron transfer from TiN to Ru nanoparticles is enhanced during the electrocatalytic process. The proposed approach opens a new avenue for stabilizing diverse metal nanostructures in many conductive matrices like metal phosphides and chalcogenides.

3.
J Cancer Res Clin Oncol ; 150(4): 218, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678126

RESUMEN

BACKGROUND: Targeting ferroptosis mediated by autophagy presents a novel therapeutic approach to breast cancer, a mortal neoplasm on the global scale. Pyruvate dehydrogenase kinase isozyme 4 (PDK4) has been denoted as a determinant of breast cancer metabolism. The target of this study was to untangle the functional mechanism of PDK4 in ferroptosis dependent on autophagy in breast cancer. METHODS: RT-qPCR and western blotting examined PDK4 mRNA and protein levels in breast cancer cells. Immunofluorescence staining appraised light chain 3 (LC3) expression. Fe (2 +) assay estimated total iron level. Relevant assay kits and C11-BODIPY (591/581) staining evaluated lipid peroxidation level. DCFH-DA staining assayed intracellular reactive oxygen species (ROS) content. Western blotting analyzed the protein levels of autophagy, ferroptosis and apoptosis-signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) pathway-associated proteins. RESULTS: PDK4 was highly expressed in breast cancer cells. Knockdown of PDK4 induced the autophagy of breast cancer cells and 3-methyladenine (3-MA), an autophagy inhibitor, countervailed the promoting role of PDK4 interference in ferroptosis in breast cancer cells. Furthermore, PDK4 knockdown activated ASK1/JNK pathway and ASK1 inhibitor (GS-4997) partially abrogated the impacts of PDK4 absence on the autophagy and ferroptosis in breast cancer cells. CONCLUSION: To sum up, deficiency of PDK4 activated ASK1/JNK pathway to stimulate autophagy-dependent ferroptosis in breast cancer.


Asunto(s)
Autofagia , Neoplasias de la Mama , Ferroptosis , MAP Quinasa Quinasa Quinasa 5 , Humanos , Ferroptosis/fisiología , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Femenino , Autofagia/fisiología , MAP Quinasa Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Sistema de Señalización de MAP Quinasas/fisiología , Animales , Línea Celular Tumoral , Ratones , Especies Reactivas de Oxígeno/metabolismo
4.
EClinicalMedicine ; 70: 102518, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38495520

RESUMEN

Background: Effective monitoring and management are crucial during long-term home noninvasive positive pressure ventilation (NPPV) in patients with hypercapnic chronic obstructive pulmonary disease (COPD). This study investigated the benefit of Internet of Things (IOT)-based management of home NPPV. Methods: This multicenter, prospective, parallel-group, randomized controlled non-inferiority trial enrolled patients requiring long-term home NPPV for hypercapnic COPD. Patients were randomly assigned (1:1), via a computer-generated randomization sequence, to standard home management or IOT management based on telemonitoring of clinical and ventilator parameters over 12 months. The intervention was unblinded, but outcome assessment was blinded to management assignment. The primary outcome was the between-group comparison of the change in health-related quality of life, based on severe respiratory insufficiency questionnaire scores with a non-inferiority margin of -5. This study is registered with Chinese Clinical Trials Registry (No. ChiCTR1800019536). Findings: Overall, 148 patients (age: 72.7 ± 6.8 years; male: 85.8%; forced expiratory volume in 1 s: 0.7 ± 0.3 L; PaCO2: 66.4 ± 12.0 mmHg), recruited from 11 Chinese hospitals between January 24, 2019, and June 28, 2021, were randomly allocated to the intervention group (n = 73) or the control group (n = 75). At 12 months, the mean severe respiratory insufficiency questionnaire score was 56.5 in the intervention group and 50.0 in the control group (adjusted between-group difference: 6.26 [95% CI, 3.71-8.80]; P < 0.001), satisfying the hypothesis of non-inferiority. The 12-month risk of readmission was 34.3% in intervention group compared with 56.0% in the control group, adjusted hazard ratio of 0.56 (95% CI, 0.34-0.92; P = 0.023). No severe adverse events were reported. Interpretation: Among stable patients with hypercapnic COPD, using IOT-based management for home NPPV improved health-related quality of life and prolonged the time to readmission. Funding: Air Liquide Healthcare (Beijing) Co., Ltd.

5.
Photodiagnosis Photodyn Ther ; 46: 104057, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508439

RESUMEN

BACKGROUND: Bronchoscopy is currently the most common technique for lung cancer diagnosis. Patients suspected of malignancy often undergo bronchoscopic examination, and biopsy is routinely used in patients with visible bronchial lesions. However, it is difficult to differentially diagnose lung cancer in patients with bronchial mucosal lesions. Thus, this study was conducted to investigate the utility of fluorescence-guided biopsy in suspected lung cancer patients with bronchial mucosal lesions. METHODS: We conducted a retrospective study in a single screening center to assess the sensitivity and specificity of fluorescence-guided biopsy compared with white light bronchoscopy (WLB) in patients with bronchial mucosal lesions. RESULTS: A total of 301 patients with bronchial mucosal lesions were enrolled in this study. The sensitivity for patients with fluorescence-guided biopsy was 60.3 % (95 % confidence interval [CI]: 53.1 %-67.1 %), which was higher than that of patients with WLB alone (45.2 %, 95 % CI: 38.2-52.4 %) (P = 0.0026). Additionally, compared with the WLB group, the fluorescence -guided biopsy group was found to have a significantly higher specificity (100 %, 95 % CI: 95.5-100 % versus 69.6 %, 95 % CI: 59.6-78.1 %), positive predictive value (100 %, 95 % CI: 96.1-100 % versus 74.3 %, 95 % CI: 65.5-81.7 %) and negative predictive value (56.3 %, 95 % CI: 48.8-63.6 % versus 39.4 %, 95 % CI: 32.3-47.0 %). CONCLUSION: Fluorescence-guided biopsy can serve as an important adjunct to WLB for the differential diagnosis of lung cancer in patients with bronchial mucosal lesions.

6.
Nat Commun ; 15(1): 2137, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459019

RESUMEN

Translational control is crucial for protein production in various biological contexts. Here, we use Ribo-seq and RNA-seq to show that genes related to oxidative phosphorylation are translationally downregulated during heart regeneration. We find that Nat10 regulates the expression of Uqcr11 and Uqcrb mRNAs in mouse and human cardiomyocytes. In mice, overexpression of Nat10 in cardiomyocytes promotes cardiac regeneration and improves cardiac function after injury. Conversely, treating neonatal mice with Remodelin-a Nat10 pharmacological inhibitor-or genetically removing Nat10 from their cardiomyocytes both inhibit heart regeneration. Mechanistically, Nat10 suppresses the expression of Uqcr11 and Uqcrb independently of its ac4C enzyme activity. This suppression weakens mitochondrial respiration and enhances the glycolytic capacity of the cardiomyocytes, leading to metabolic reprogramming. We also observe that the expression of Nat10 is downregulated in the cardiomyocytes of P7 male pig hearts compared to P1 controls. The levels of Nat10 are also lower in female human failing hearts than non-failing hearts. We further identify the specific binding regions of Nat10, and validate the pro-proliferative effects of Nat10 in cardiomyocytes derived from human embryonic stem cells. Our findings indicate that Nat10 is an epigenetic regulator during heart regeneration and could potentially become a clinical target.


Asunto(s)
Miocitos Cardíacos , Procesamiento Proteico-Postraduccional , Animales , Femenino , Humanos , Masculino , Ratones , Acetiltransferasas/metabolismo , Miocitos Cardíacos/metabolismo , Acetiltransferasas N-Terminal/metabolismo , ARN Mensajero/metabolismo , Porcinos
7.
ACS Nano ; 18(8): 6243-6255, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38345597

RESUMEN

Efficient catalysts with minimal content of catalytically active noble metals are essential for the transition to the clean hydrogen economy. Catalyst supports that can immobilize and stabilize catalytic nanoparticles and facilitate the supply of electrons and reactants to the catalysts are needed. Being hydrophilic and more conductive compared with carbons, MXenes have shown promise as catalyst supports. However, the controlled assembly of their 2D sheets creates a challenge. This study established a lattice engineering approach to regulate the assembly of exfoliated Ti3C2Tx MXene nanosheets with guest cations of various sizes. The enlargement of guest cations led to a decreased interlayer interaction of MXene lamellae and increased surface accessibility, allowing intercalation of Pd nanoparticles. Stabilization of Pd nanoparticles between interlayer-expanded MXene nanosheets improved their electrocatalytic activity. The Pd-immobilized K+-intercalated MXene nanosheets (PdKMX) demonstrated exceptional electrocatalytic performance for the hydrogen evolution reaction with the lowest overpotential of 72 mV (@10 mA cm-2) and the highest turnover frequency of 1.122 s-1 (@ an overpotential of 100 mV), which were superior to those of the state-of-the-art Pd nanoparticle-based electrocatalysts. Weakening of the interlayer interaction during self-assembly with K+ ions led to fewer layers in lamellae and expansion of the MXene in the c direction during Pd anchoring, providing numerous surface-active sites and promoting mass transport. In situ spectroscopic analysis suggests that the effective interfacial electron injection from the Pd nanoparticles strongly immobilized on interlayer-expanded PdKMX may be responsible for the improved electrocatalytic performance.

8.
Skeletal Radiol ; 53(6): 1045-1059, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38265451

RESUMEN

OBJECTIVE: To identify and describe existing models for predicting knee pain in patients with knee osteoarthritis. METHODS: The electronic databases PubMed, EMBASE, CINAHL, Web of Science, and Cochrane Library were searched from their inception to May 2023 for any studies to develop and validate a prediction model for predicting knee pain in patients with knee osteoarthritis. Two reviewers independently screened titles, abstracts, and full-text qualifications, and extracted data. Risk of bias was assessed using the PROBAST. Data extraction of eligible articles was extracted by a data extraction form based on CHARMS. The quality of evidence was graded according to GRADE. The results were summarized with descriptive statistics. RESULTS: The search identified 2693 records. Sixteen articles reporting on 26 prediction models were included targeting occurrence (n = 9), others (n = 7), progression (n = 5), persistent (n = 2), incident (n = 1), frequent (n = 1), and flares (n = 1) of knee pain. Most of the studies (94%) were at high risk of bias. Model discrimination was assessed by the AUROC ranging from 0.62 to 0.81. The most common predictors were age, BMI, gender, baseline pain, and joint space width. Only frequent knee pain had a moderate quality of evidence; all other types of knee pain had a low quality of evidence. CONCLUSION: There are many prediction models for knee pain in patients with knee osteoarthritis that do show promise. However, the clinical extensibility, applicability, and interpretability of predictive tools should be considered during model development.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Modelos Estadísticos , Pronóstico , Articulación de la Rodilla/diagnóstico por imagen , Dolor/etiología
10.
J Ethnopharmacol ; 321: 117552, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38072293

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: According to the theory of traditional Chinese medicine, the main factors related to alcoholic liver disease (ALD) are qi stagnation and blood stasis of the five viscera. Previously, we showed that the bioactive components of Alhagi honey have various pharmacological effects in treating liver diseases, but the influence of Alhagi honey on ALD (and its mechanism of action) is not known. AIM OF THE STUDY: To determine the efficacy of the main active component of Alhagi honey, the polysaccharide AHPN80, in ALD and to explore the potential mechanism of action. MATERIALS AND METHODS: AHPN80 was isolated from dried Alhagi honey and identified by transmission electron microscopy, Fourier-transform infrared spectroscopy, and gas chromatography. Venous blood, liver tissue, and colon tissue were collected in a mouse model of alcohol-induced acute liver injury. Histology, staining (Oil Red O, Alcian Blue-Periodic Acid Schiff) and measurement of reactive oxygen species (ROS) levels were used to detect histopathologic and lipid-accumulation changes in the liver and colon. Lipopolysaccharide (LPS) levels and the content of proinflammatory cytokines in serum were measured by enzyme-linked immunosorbent assays. Commercial kits were employed to detect biochemistry parameters in serum and the liver. A terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining kit was used to identify hepatocyte apoptosis. Expression of tight junction-associated proteins in colon tissues and nuclear factor erythroid 2-related factor 2/heme oxygenase-1/toll-like receptor-4/mitogen-activated protein kinase (Nrf2/HO-1/TLR4/MAPK) pathway-related proteins in liver tissues and HepG2 cells were analyzed by immunofluorescence or western blotting. RESULTS: In a mouse model of alcohol-induced acute liver injury, AHPN80 therapy: significantly improved liver parameters (cytochrome P450 2E1, alcohol dehydrogenase, aldehyde dehydrogenase, superoxide dismutase, malondialdehyde, glutathione peroxidase, catalase, total cholesterol, triglycerides, alanine transaminase, aspartate transaminase); reduced serum levels of LPS, interleukin (IL)-1ß, IL-6, and tumor necrosis faction-α; increased levels of IL-10 and interferon-gamma. AHPN80 reduced ALD-induced lipid accumulation and ROS production, improved alcohol-induced inflammatory damage to hepatocytes, and inhibited hepatocyte apoptosis. Immunofluorescence staining and western blotting suggested that AHPN80 might eliminate hepatic oxidative stress by activating the Nrf2/HO-1 signaling pathway, repair the intestinal barrier, inhibit the LPS/TLR4/MAPK signaling pathway, and reduce liver inflammation. CONCLUSIONS: AHPN80 may activate the Nrf2/HO-1 pathway to eliminate oxidative stress, protect the intestinal barrier, and regulate the TLR4/MAPK pathway to treat ALD in mice. AHPN80 could be a functional food and natural medicine to prevent ALD and its complications.


Asunto(s)
Miel , Hepatopatías Alcohólicas , Ratones , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 4/metabolismo , Transducción de Señal , Hígado , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/prevención & control , Estrés Oxidativo , Etanol/farmacología , Polisacáridos/farmacología , Polisacáridos/uso terapéutico
11.
Small ; 20(9): e2306781, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37806758

RESUMEN

The defect engineering of inorganic solids has received significant attention because of its high efficacy in optimizing energy-related functionalities. Consequently, this approach is effectively leveraged in the present study to synthesize atomically-thin holey 2D nanosheets of a MoN-Mo5 N6 composite. This is achieved by controlled nitridation of assembled MoS2 monolayers, which induced sequential cation/anion migration and a gradual decrease in the Mo valency. Precise control of the interlayer distance of the MoS2 monolayers via assembly with various tetraalkylammonium ions is found to be crucial for synthesizing sub-nanometer-thick holey MoN-Mo5 N6 nanosheets with a tunable anion/cation vacancy content. The holey MoN-Mo5 N6 nanosheets are employed as efficient immobilization matrices for Pt single atoms to achieve high electrocatalytic mass activity, decent durability, and low overpotential for the hydrogen evolution reaction (HER). In situ/ex situ spectroscopy and density functional theory (DFT) calculations reveal that the presence of cation-deficient Mo5 N6 domain is crucial for enhancing the interfacial interactions between the conductive molybdenum nitride substrate and Pt single atoms, leading to enhanced electron injection efficiency and electrochemical stability. The beneficial effects of the Pt-immobilizing holey MoN-Mo5 N6 nanosheets are associated with enhanced electronic coupling, resulting in improvements in HER kinetics and interfacial charge transfer.

12.
J Antibiot (Tokyo) ; 77(2): 93-101, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37993600

RESUMEN

Breast cancer (BCa) is one of the common malignancies among women. Doxorubicin (Dox), a type of anthracycline anti-tumor drug, is a first-line chemotherapy drug for BCa. It is badly needed to effectively reverse BCa resistance to Dox and improve the clinical symptoms of BCa. Chromatin Modification protein 4C (CHMP4C) is a subunit of the endosomal sorting complex and is expressed in the nucleus and cytoplasm. CHMP4C has been shown to be overexpressed in multiple types of cancers. However, its possible effects on the progression and drug resistance of BCa are still unclear. In this study, we found CHMP4C was highly expressed in BCa tissues and promoted cell proliferation. In addition, CHMP4C promoted resistance of BCa cells to Dox through targeting Snail. We further found that knockdown of CHMP4C inhibited tumor growth and enhanced sensitivity to Dox in vivo. We therefore thought CHMP4C could serve as a target for decreasing BCa drug resistance.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Femenino , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Cromatina , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos
13.
Angew Chem Int Ed Engl ; 63(7): e202317361, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38116868

RESUMEN

Numerous reported bioinspired osmotic energy conversion systems employing cation-/anion-selective membranes and solutions with different salinity are actually far from the biological counterpart. The iso-osmotic power generator with the specific ionic permselective channels (e.g., K+ or Na+ channels) which just allow specific ions to get across and iso-osmotic solutions still remain challenges. Inspired by nature, we report a bioinspired K+ -channel by employing a K+ selective ligand, 1,1,1-tris{[(2'-benzylaminoformyl)phenoxy]methyl}ethane (BMP) and graphene oxide membrane. Specifically, the K+ and Na+ selectivity of the prepared system could reach up to ≈17.8, and the molecular dynamics simulation revealed that the excellent permselectivity of K+ mainly stemmed from the formed suitable channel size. Thus, we assembled the K+ -selective iso-osmotic power generator (KSIPG) with the power density up to ≈15.1 mW/m2 between equal concentration solutions, which is higher than traditional charge-selective osmotic power generator (CSOPG). The proposed strategy has well shown the realizable approach to construct single-ion selective channels-based highly efficient iso-osmotic energy conversion systems and would surely inspire new applications in other fields, including self-powered systems and medical materials, etc.

14.
Int J Biol Macromol ; 259(Pt 1): 128937, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145695

RESUMEN

The Alhagi honey polysaccharide (AHP) exhibits notable anti-inflammatory, antioxidant, and immunomodulatory properties, positioning it as a promising candidate in traditional Chinese medicine. In this investigation, we successfully isolated and purified a neutral AHP, designated AHPN50-1a, subsequently elucidating its structural attributes. AHPN50-1a was found to have a molecular weight of 1.756 × 106 Da, featuring a structural motif characterized by a recurring (1→6)-α-GlcP linker. To comprehensively evaluate its therapeutic potential, we explored the protective effects of AHPN50-1 in a murine model of dextran sodium sulfate-induced colitis. Administration of AHPN50-1 at doses of 200 and 400 mg/kg/day resulted in improved food intake, increased body weight, and increased colon length in mice with acute colitis. Simultaneously, a reduction in the disease activity index and histological scores was observed. AHPN50-1 effectively mitigated colon tissue damage, down-regulated the expression levels of pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) in colon tissue, restored intestinal microbiota diversity, and concentrations of short-chain fatty acids (SCFAs) of gut microbiota metabolites, thus alleviating intestinal inflammation in mice. In summary, our findings underscore the promise of AHPN50-1 as a valuable nutritional or dietary supplement for the treatment and prevention of inflammatory bowel disease.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Miel , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Colon , Disbiosis/tratamiento farmacológico , Disbiosis/patología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Citocinas/metabolismo , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
15.
FASEB J ; 38(1): e23369, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38100642

RESUMEN

The human cardiovascular system has evolved to accommodate the gravity of Earth. Microgravity during spaceflight has been shown to induce vascular remodeling, leading to a decline in vascular function. The underlying mechanisms are not yet fully understood. Our previous study demonstrated that miR-214 plays a critical role in angiotensin II-induced vascular remodeling by reducing the levels of Smad7 and increasing the phosphorylation of Smad3. However, its role in vascular remodeling evoked by microgravity is not yet known. This study aimed to determine the contribution of miR-214 to the regulation of microgravity-induced vascular remodeling. The results of our study revealed that miR-214 expression was increased in the forebody arteries of both mice and monkeys after simulated microgravity treatment. In vitro, rotation-simulated microgravity-induced VSMC migration, hypertrophy, fibrosis, and inflammation were repressed by miR-214 knockout (KO) in VSMCs. Additionally, miR-214 KO increased the level of Smad7 and decreased the phosphorylation of Smad3, leading to a decrease in downstream gene expression. Furthermore, miR-214 cKO protected against simulated microgravity induced the decline in aorta function and the increase in stiffness. Histological analysis showed that miR-214 cKO inhibited the increases in vascular medial thickness that occurred after simulated microgravity treatment. Altogether, these results demonstrate that miR-214 has potential as a therapeutic target for the treatment of vascular remodeling caused by simulated microgravity.


Asunto(s)
MicroARNs , Ingravidez , Humanos , Ratones , Animales , Músculo Liso Vascular/metabolismo , MicroARNs/metabolismo , Remodelación Vascular/genética , Aorta/metabolismo , Miocitos del Músculo Liso/metabolismo
16.
Small ; : e2308277, 2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38044301

RESUMEN

Bioinspired two-dimensional (2D) nanofluidic systems for photo-induced ion transport have attracted great attention, as they open a new pathway to enabling light-to-ionic energy conversion. However, there is still a great challenge in achieving a satisfactory performance. It is noticed that organic solar cells (OSCs, light-harvesting device based on photovoltaic effect) commonly require hole/electron transport layer materials (TLMs), PEDOT:PSS (PE) and PDINN (PD), respectively, to promote the energy conversion. Inspired by such a strategy, an artificial proton pump by coupling a nanofluidic system with TLMs is proposed, in which the PE- and PD-functionalized tungsten disulfide (WS2 ) multilayers construct a heterogeneous membrane, realizing an excellent output power of ≈1.13 nW. The proton transport is fine-regulated due to the TLMs-engineered band structure of WS2 . Clearly, the incorporating TLMs of OSCs into 2D nanofluidic systems offers a feasible and promising approach for band edge engineering and promoting the light-to-ionic energy conversion.

17.
ACS Nano ; 17(23): 23732-23745, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039389

RESUMEN

Defect engineering provides an effective way to explore efficient nanostructured catalysts. Herein, we synthesize defect-regulated two-dimensional superlattices comprising interstratified holey g-C3N4 and TiO2 monolayers with tailorable interfacial coupling. Using this interfacial-coupling-controlled hybrid system, a strong interdependence among vacancy content, performance, and interfacial coupling was elucidated, offering key insights for the design of high-performance catalysts. The defect-optimized g-C3N4-TiO2 superlattice exhibited higher photocatalytic activity toward visible-light-induced N2 fixation (∼1.06 mmol g-1 h-1) than defect-unoptimized and disorderly assembled g-C3N4-TiO2 homologues. The high photocatalytic performance of g-C3N4-TiO2 was attributed to the hybridization-induced defect creation, facilitated hydrogenation of adsorbed nitrogen, and improvement in N2 adsorption and charge transport. A comparison of the defect-dependent photocatalytic activity of g-C3N4, g-C3N4 nanosheets, and g-C3N4-TiO2 revealed the presence of optimal defect content for improving photocatalytic performance and the continuous increase of hybridization impact with the defect content. Sophisticated mutual influence among defect, electronic coupling, and photocatalytic ability underscores the importance of defect fine control in exploring high-performance hybrid photocatalysts. Along with the DFT calculation, the excellent photocatalyst performance of defect-optimized g-C3N4-TiO2 can be ascribed to the promotion of the uphill *N hydrogenation step as well as to enhancement of N2 adsorption, charge transfer kinetics, and mass transports.

18.
iScience ; 26(12): 108556, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38125015

RESUMEN

Spaceflight is physically demanding and can negatively affect astronauts' health. It has been shown that the human gut microbiota and cardiac function are affected by spaceflight and simulated spaceflight. This study investigated the effects of the gut microbiota on simulated spaceflight-induced cardiac remodeling using 10° of head-down bed rest (HDBR) in rhesus macaques and 30° of hindlimb unloading (HU) in mice. The gut microbiota, fecal metabolites, and cardiac remodeling were markedly affected by HDBR in macaques and HU in mice, cardiac remodeling in control mice was affected by the gut microbiota of HU mice and that of HU mice was protected by the gut microbiota of control mice, and there was a correlation between cardiac remodeling and the gut microbial-derived metabolite trimethylamine N-oxide. These findings suggest that spaceflight can affect cardiac remodeling by modulating the gut microbiota and fecal metabolites.

19.
Bone Res ; 11(1): 53, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872163

RESUMEN

Bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoblast function play critical roles in bone formation, which is a highly regulated process. Long noncoding RNAs (lncRNAs) perform diverse functions in a variety of biological processes, including BMSC osteogenic differentiation. Although several studies have reported that HOX transcript antisense RNA (HOTAIR) is involved in BMSC osteogenic differentiation, its effect on bone formation in vivo remains unclear. Here, by constructing transgenic mice with BMSC (Prx1-HOTAIR)- and osteoblast (Bglap-HOTAIR)-specific overexpression of HOTAIR, we found that Prx1-HOTAIR and Bglap-HOTAIR transgenic mice show different bone phenotypes in vivo. Specifically, Prx1-HOTAIR mice showed delayed bone formation, while Bglap-HOTAIR mice showed increased bone formation. HOTAIR inhibits BMSC osteogenic differentiation but promotes osteoblast function in vitro. Furthermore, we identified that HOTAIR is mainly located in the nucleus of BMSCs and in the cytoplasm of osteoblasts. HOTAIR displays a nucleocytoplasmic translocation pattern during BMSC osteogenic differentiation. We first identified that the RNA-binding protein human antigen R (HuR) is responsible for HOTAIR nucleocytoplasmic translocation. HOTAIR is essential for osteoblast function, and cytoplasmic HOTAIR binds to miR-214 and acts as a ceRNA to increase Atf4 protein levels and osteoblast function. Bglap-HOTAIR mice, but not Prx1-HOTAIR mice, showed alleviation of bone loss induced by unloading. This study reveals the importance of temporal and spatial regulation of HOTAIR in BMSC osteogenic differentiation and bone formation, which provides new insights into precise regulation as a target for bone loss.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Animales , Humanos , Ratones , Huesos/metabolismo , Diferenciación Celular/genética , Ratones Transgénicos , MicroARNs/genética , Osteogénesis/genética , ARN Largo no Codificante/genética
20.
Mol Ther Nucleic Acids ; 33: 629-641, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37650118

RESUMEN

Cardiogenesis is an extremely complicated process involved with DNA regulatory elements, and trans factors regulate gene expression pattern spatiotemporally. Enhancers, as the well-known DNA elements, activate target gene expression by transcription factors (TFs) occupied to organize dynamic three-dimensional (3D) interactions, which when affected or interrupted might cause heart defects or diseases. In this study, we integrated transcriptome, 3D genome, and regulatome to reorganize the global 3D genome in cardiomyogenesis, showing a gradually decreased trend of both chromatin interactions and topological associating domains (TADs) during cardiomyocyte differentiation. And almost all of the chromatin interactions occurred within the same or between adjacent TADs involved with enhancers, indicating that dynamical rewiring of enhancer-related chromatin interactions in the continuous expansive TADs is closely correlated to cardiogenesis. Moreover, we found stage-specific interactions activate stage-specific expression to be involved within corresponding biological functions, and the stage-specific combined regulations of enhancers and binding TFs form connected networks to control stage-specific expression and biological processes, which promote cardiomyocyte differentiation. Finally, we identified markers based on regulatory networks, which might drive cardiac development. This study demonstrates the power of enhancer interactome combined with active TFs to reveal insights into transcriptional regulatory networks during cardiomyogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...